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Phase Transition in One-Dimensional Lattice 
Gauge Theories 

M. KhorramP -3 

Received April 6, 1995 

Considering one-dimensional nonminimally coupled lattice gauge theories, a 
class of nonlocal one-dimensional systems is presented which exhibits a phase 
transition. It is shown that the transition has a latent heat, and therefore is a first- 
order phase transition. 

~ T R O D U C T I O N  

During recent decades lattice gauge theories have been extensively stud- 
ied (Wilson, 1974; Wegner, 1971; Kogut, 1979; Balian et  al., 1974, 1975). 
Lattice theories have no ultraviolet divergences, they provide a nonperturba- 
tive approach to some theories, such as QCD (see, e.g., Wilson, 1974), and 
they are theoretically interesting in themselves. They introduce possibilities 
which are absent in the continuum; for example, one can consider discrete 
gauge groups as well as continuous ones. So far, the main interest has 
been the study of lattice gauge theories (especially pure-gauge theories) on 
multidimensional lattices (Wegner, 1971; Balian et  al., 1975). 

The case of one-dimensional lattices, however, is completely different: 
First, one can consider the general form of (minimally coupled) gauge- 
invariant interactions, including matter fields as well as gauge fields (Khor- 
rami, 1994). Second, it is a well-known theorem that one-dimensional systems 
with local interactions do not exhibit phase transition (Domb and Lebowitz, 
1986). There are, of course, examples of nonlocal interactions which result 
in phase transition (Domb and Lebowitz, 1986), but one cannot deduce 
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558 Khorrami 

them from general principles. Recently, there has been more interest in one- 
dimensional systems with phase transition (Mend~s France and Tenen- 
baum, 1993a,b). 

Here we discuss in Sections 1 and 2 a class of one-dimensional systems 
which are natural extensions of minimally coupled gauge-invariant systems 
(Khorrami, 1994). Then in Section 3 the analytic behavior of the free energy 
of these systems is considered, and it is shown that, for properly normalized 
coupling constants, there is a phase transition; in fact, there is a transition 
temperature above which the pure-gauge interaction of the system is com- 
pletely eliminated. Below this temperature, the system goes to a minimum- 
energy state of the pure-gauge interaction, and the effects of nonminimality 
are lost. Finally, in Section 4 the order of the transition is considered. It is 
shown that the transition is of first order, and it has a latent heat. The 
distinguishing features of this class of systems are that, first, they provide 
an example of one-dimensional systems with phase transition which arise 
from a general principle (gauge invariance), not an artificial modeling, second, 
such systems are easily solved, and third, the systems belonging to this class 
possess a certain kind of universality, that is, the main features of the transition 
do not depend on the specific system chosen. 

I. NONMINIMALLY COUPLED LATTICE GAUGE THEORIES  

Consider a lattice consisting of a given set of sites i and links (ij), two 
sets V and I?, a function -: V -9 '~', and a multiplication from 'v" X V to ~'. 
The Hamiltonian for a nearest neighbor interaction is of the form (Khorrami, 
1994; Rebbi). 

Ho := - ~  F(S, Sj) (1.1) 
(i j )  

where F is a real-valued function and S is the matter field (a V-valued function). 
Now, suppose that a group G acts on the sets V and 17' through 

S ---> gS (I .2) 

( g s )  = 

where ~ is a representation of g. Introducing a group-element-valued field 
defined on links, one reaches a gauge-invariant Hamiltonian 

H : =  H m q- Ha (1.3) 
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where 

and 

Hm := - ~  F(Si(J<ij>Sj) (1.4) (ij) 

H c  : =  -E(WI. Wl 2 . . . .  ) (1 .5)  

In these definitions, U is a G-valued field on links, E is a conjugation- 
invariant (class) real-valued function of its variables, which are members of 
G, and the Wt are Wilson loops of the field U (Khorrami, 1994). It is obvious 
that the Hamiltonian (1.1) is invariant under global gauge transformation, 
and (1.3) is invariant under the local gauge transformation 

Si ~ ~iSi (1.6) 

U<ij) ---> giU<ij>g) -I 

This is a minimally coupled gauge-invariant Hamiltonian (Khorrami, 1994). 
Now, all we need to make H gauge invariant is that U<ij> transforms like 

(1.6).  It need not be a group-valued field. If this field (the gauge field) is 
not group-valued, we have a nonminimal coupling. 

2. ONE-DIMENSIONAL LATTICE, AND THE GENERAL FORM 
OF THE PARTITION FUNCTION IN THE 
THERMODYNAMIC LIMIT 

A one-dimensional closed lattice has only one Wilson loop. So the 
Hamiltonian (1.3) takes the form 

N -  1/2 (N~I2 ) 
H = - ~ F(S i_ l l zUiS i+l l2 )  - E Ui (2.1) 

i= 1/2 \ i= 1/2 

where N is the number of lattice sites, 

XN+J, := Xk (2.2) 

and (Khorrami, 1994) 

U i :~--- U(i_ll2,i+ll2) 
Our main goal is to calculate the partition function 

(2.3) 

(2.4) 
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where boldface quantities refer to the set of corresponding quantities on every 
site (or link). We also assume that the integration measures are invariant 
under the action of group. So, defining a partial partition function 

Z,, := I DS V[. f(gi-I/2UiSi+l/2) (2.5) 

where 

it is easy to see that 

f : =  exp(13F) 
:= exp(13E) (2.6) 

f 
Zm = | DS Dg ~-~ f(gi_ll2gi_ll2Oigi+ll2Si+ll2) (2.7) 

3 i 

where we have normalized the group volume to one. 
Now, defining a linear operator P(U, S, S') on the functionals of G 

through 

f dg' d~(g')f(S'g'-IO~S) (2.8) (~P)(g) 

one can see that 

We want to prove that the eigenvector of P corresponding to its largest 
eigenvalue is independent of its arguments, and that the largest eigenvalue 
itself depends only on the orbits of the arguments of P, provided that G is 
compact and the equation 

Ug = g"U (2.10) 

always has a solution for g". 
To establish these properties, we observe that 

(~P)(g) <-- ~J(gma• I dg' f(S'g'-'OgS) (2.11) 

where gmax is the element of the group on which + attains its maximum 
value. This point exists, since the group is compact. Using the existence of 
a solution for (2.10) and the invariance of the group measure under group 
translations, one can write the above inequality as 



Phase Transition in 1D Lattice Gauge Theories 561 

f (OP)(g) ~J(grnax) J dg' f(S'g'-'(.IS) (2.12) < 

This inequality also holds when qJ is an eigenvector. So, 

kt~(g) <--- ~J(gmax) I dg' f(S'~'-IOS) (2.13) 

where h is the corresponding eigenvalue. In the special case g = gmax, one has 

X0(gm~) --< 0(gm~) f dg' f(S'g'-'OS) (2.14) 

One can always make O(gm~,) positive. This implies that 

k <-- f dg'f(~S'$'-~OS) (2.15) 

It is also seen that the right-hand side of  (2.15) is attained for the constant 
function. So the largest eigenvalue of  P is 

S, S') := I dg'f(S'~'-'OS) (2.16) ~z(U, 

Using the existence of a solution for (2.10) and the invariance of  the group 
measure under group translations, one can also see that 

iz(gUg '-~, ~"S, ~"S') = ~(U, S, S') (2.17) 

which is what we wanted to prove. 
So, in the thermodynamic limit we have 

Z=fDSDUe(17Ii Ui)[~j I~(,UjI,ISj+mI, ISj_,a,) ] (2.18) 

where the absolute value means the orbit of the element under the action of  G. 
Now, we have 

=fDUe(g~U,)[~Ix(IU, I, ISj+mI, ISj-,a')] 

=fDUdge(glT[i Ui)[~iz(lUjl, lS,+ml,15j_ml) ] (2.19) 
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Using the existence of a solution in (2. I0), it is easy to show that the integral 

depends only on the orbits of the Ui; in fact, it depends on the product of 
the orbits: 

v(U) = v(I~I. IUil) (2.21) 

The product on the right-hand side of (2.21) is well defined, since we have 

glUtg'l-~g2U2g~ -I = glg'UjU2g~ -I (2.22) 

So one can define the product of two orbits as the orbit of the product of 
two arbitrary elements, one from each orbit. 

To conclude, one can write the partition function as 

This relation holds, provided that the group G is compact, that equation (2.10) 
has always a solution for g", and that the integration measures are invariant 
under the action of the group. 

3. A C L A S S  OF ONE-DIMENSIONAL SYSTEMS WITH PHASE 
TRANSITION 

Suppose that the matter-field space consists of a single orbit of the gauge 
group. It is then easy to show that the partial partition function 

ZG := I DU exp[-13H(S, U)] (3.1) 

does not depend on S (Khorrami, 1994). This means that one can eliminate 
the matter field from the Hamiltonian and use a gauge-fixed Hamiltonian 

Hgf := - ~ i  F~ Ui) (3.2) 

where 

F~ := F(~OS ~ (3.3) 

and S O is an arbitrary member of the matter-field space. In this case one has 
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Z = ( I d S  DU exp(-13Hgf) (3.4) 

This result holds even for finite lattices. In the thermodynamic limit, 
using (2.23), we have 

Now, take a special form for the gauge field: the formal product of a real 
number in a set {am} and a member of the gauge group: 

where 

and 

U = vW (3.6) 

W E G (3.7) 

v e {am} (3.8) 

We also assume that the functions E and F are linear with respect to v's. So 
we have 

(3.9) 

E is a bounded function, and its bound does not depend on N. Therefore the 
maximum of l a,,,I should be 1, so that neither does In Z per site diverge in 
the thermodynamic limit nor does the pure-gauge part of the interaction 
disappear in this limit. We now rewrite (3.9) as 

where we have assumed that the maxima of F ~ and E in (3.10) are one, and 
{am} is a subset.of [0, 11. One can then rewrite (3.5) as 

or 
Zgf ~ {~vjl v(~i I)i)[~j ~(vJ) ] (3.11) 

(3.12) 
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where we have defined 

:= f dg exp[xF(g)] l~(x) (3.13) 

Writing the Taylor series for I<E)(x), 
cx~ 

l(~(x) = Y~ ~ x "  (3.14) 
n=O 

we will have 

Zgf = ~ E (~K)%r I-[ [v;l~ta"(~3Jvj)] 
[~/1 n=O j 

= ~ (~K)%t [aT, I )(~Ja,,, N (3.15) 
n = 0  

The ratio of different terms of this series varies exponentially with N. So in 
the thermodynamic limit only the largest term contributes. We have then (if 
{a,,} r {1}) 

Zgf= o~ {~m [l~)(~Jarn)]} N 

But in this partition function there is no trace of the pure-gauge interaction. 
One can restore this interaction through renormalizing the coupling constant: 

K =: vaV x (3.17) 

We take K to be constant and 

0 < x - <  1 (3.18) 

To make In Z per site finite, x should not be greater than 1. One then has 

Zgf = ~ ([3KNX)%t [aTnl )(~3Jam 
n=O 

=: ~ Z, (3.19) 
n 

Now, there is a local maximum for Z. aside from Z0. Assuming nma x tO be 
large, and using the fact that l~L3(x) behaves like exp(x) for large x, we have 
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which yields 

o r  

But 

1 
a ~  ~ - -  for n large (3.20) 

n! 

In Z, -- n - In n + n ln(13v, N x) 

+ N ln[l~%(13J)] for n large (3.21) 

d In Z, _ In [3KNX (3.22) 
dn n 

nmax = 13KN x (3.23) 

In Z,.,a. = 13KN x + N lntll)#)(13J)] (3.24) 

is a local maximum. This should be compared with In Zo, which is another 
local maximum: 

In Zo = Nln[~]t_ ,,, l~)(13Ja")] (3.25) 

The greater term determines the partition function. But we have 

7 _ . 0 [  ~ I13r176 
In ~ = U In l~rO)(13j) - f3KU x-' (3.26) 

If x < 1, this expression is always positive for large N, which means that 
the pure-gauge interaction is eliminated. However, ifx = 1, there is a particular 
value for 13, 13,, at which this expression changes sign. So we have 

1 In Z = (3.27) 

N Cln[l~r~ + 13K, [3 > 13, (T < T,) 

It is seen that above T, the partition function is independent of K, that is, the 
system becomes independent of the pure-gauge interaction. Below Tt the 
system is independent of the a,,, that is, the system is frozen in a,, = 1 and 
a value for the W,- for which the function E(1-I,- W~) is maximum, 1. So, for 
T > Tt the system does not see the pure-gauge interaction, whereas for T < 
7", the system goes to the state of minimum energy (of the pure-gauge 
interaction). 
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Also note that this renormalization of  the coupling constant has a simple 
meaning; it means that the pure-gauge interaction introduced in (3.10), is in 
fact an interaction density, but a density which is uniform on the lattice. 

4. ORDER OF THE TRANSITION 

From (3.27), we have 

In Z = 

j m 

~ IbF~ 13 < 13, (T > Tt) 

l~C~(IBJ) 
J /bp,)(13j) + K, 13 > 13, (T < T,) 

(4.1) 

Now, 

r \a13] 

= _ !  ~(o In Z~ 
r \ a13 ) 

where S and A are the entropy and the free energy of the system, respectively. 
We will see that a sufficient condition for AS to be positive is that 

L ro~"(~) J > 0 (4.3) 

But, for any system we have 

Cv = -~ 32---~Z > 0 (4.4) 
T al32 

Using this for a system with K = 0 and {am} = { 1 }, one can prove (4.3). 
It is now easy to prove that AS > 0: 
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A S =  J ~  1 - ~ - ~ /  K (4.5) 

From (4.3), we have 

or  

l~CF~ l ~ ) ( f S J )  

ibt~')(~Jam) < I~FO)(~j) 
(4.6) 

IJ~ l~%(fMa,,) 
< (4.7) /~(pj) t~"~(pJ) 

Inserting this inequality in (4.5), one concludes that 

AS > 0 (4.8) 

This means that the phase transition has a latent heat. So it is a first-order 
phase transition. 
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